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Abstract 

Results of Monte Carlo simulations of CO oxidation with site blocking, and of the Lotka model (A(gas) -+ Atads), 
B(ads) + B(gas), A(ads) + B(ads) --) ZB(ads)) are presented. The introduction of a site blocking adsorbate can lead to 
oscillations in CO oxidation. The system is bistable for certain coverages of the site blocking adsorbate; adsorption and 
desorption of that adsorbate drive the system from one stable state to the other and back. The oscillations in the Lotka model 
are due to avalanches of A’s that are converted into B’s by the autocatalytic step. Normal rate equations are unable to 
describe these systems correctly. 

Keywords: Monte Carlo; L.attice-gas model; Oscillatory reactions 

1. Introduction 

Reactions on surfaces of catalysts generally 
involve adsorbates that are adsorbed on neigh- 
boring sites. The kinetics depends therefore on 
the correlation in the occupation of neighboring 
sites. This correlation is affected by lateral in- 
teractions [l-3], but also by high reaction rates 
[4,5]. For example, a fast reaction between two 
adsorbates will lead to segregation, because in 
the region where they meet they will react 
away. A good theory of kinetics of catalysis 
should take this correlation in the occupation of 
sites into account. 

In this paper I present a method with which it 
is possible to simulate how the occupation of all 
sites of a catalyst’s surface changes over a long 
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period of time. A lattice-gas model is used to 
represent the catalyst’s surface, and the evolu- 
tion of the adlayer is described by a master 
equation that is solved numerically via a Monte 
Carlo simulation. The master equation contains 
so-called transition probabilities. These can be 
determined by fitting to experimental data, but 
one can also try to calculate them ab initio, very 
similarly to the calculations of rate constants 
that have been published recently [6,7]. 

The kinetics of reactions on surfaces is usu- 
ally described in terms of macroscopic rate 
equations that indicate how the coverages of the 
adsorbates change in time [8,9]. These equations 
can be derived from the master equation, but 
this involves some approximations that need not 
be correct. The term anomalous kinetics has 
been used to describe the inadequacy of the 
macroscopic rate equations [ 101. 
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I present results of Monte Carlo simulations 
for two systems that show oscillations. Oscilla- 
tory reaction on catalysts draw currently a lot of 
attention, mainly because of the work in the 
groups of Ertl and King on CO oxidation [ 11,121. 
Oscillations pose an interesting problem for 
Monte Carlo simulations. It is quite common 
that an oscillation can be observed on some 
small part of the catalyst. Different parts may 
oscillate out-of-phase, however, and the net re- 
sult is that there is no global oscillation. A 
synchronization mechanism is needed to prevent 
the adlayer splitting up into out-of-phase local 
oscillations. It is interesting that such a mecha- 
nism can result from only short-range interac- 
tions, and Monte Carlo simulations show how 
such mechanism operates on an atomic scale. 
The two systems also clearly show the short- 
comings of macroscopic rate equations. 

2. Theory 

One can take into account the effect of the 
occupation of the neighboring sites on the reac- 
tivity of adsorbates by describing the evolution 
of the adlayer with a master equation [ 131 

where { si) and { si} refer to the configuration of 
the adlayer (i.e., si and S: are the adsorbates at 
site i before and after a reaction), the P’s are 
the probabilities of the configurations, t is time, 
and the W’s are transition probabilities per unit 
time. These transition probabilities give the rates 
with which reactions change the occupations of 
the sites. The number of relevant transition 
probabilities is limited; Wrs:xs,j = 0 when more 
than a few si’s differ from the si’s, because 
each reaction changes only the occupation of a 
few sites. Many transitions probabilities are also 
equal to each other; all configuration changes 
caused by a particular type of reaction have the 
same W. 

The master equation bridges the gap between 
first principles and macroscopic rate equations. 
The link to first principles is made by expres- 
sions for the transition probabilities. These can 
be obtained in almost the same way as expres- 
sions for rate constants in variational transition- 
state theory [ 14- 161. The difference is in the 
partitioning of the phase space of the system. In 
variational transition-state theory one defines 
only one dividing surface that splits phase space 
in a region corresponding to reactants and one 
corresponding to products. Here phase space is 
split into many regions, each of which corre- 
sponds to a particular configuration of the ad- 
layer. The transition probability Wcs~lfsil for the 
reaction that changes the adlayer from { si} to 
{si), is then given by the flux through the 
dividing surface that separates the correspond- 
ing regions in phase space divided by the proba- 
bility to find the system in the region corre- 
sponding to {si} (see Fig. 1). This rather abstract 
formulation reduces to 

k,T Q' 
ys;)(sJ = h ze -Etm/W 

3 

an expression which is well-known from transi- 

Fig. 1. Schematic drawing of the partitioning of phase space into 
regions R, each of which corresponds to some particular configu- 
ration of the adlayer. The reaction that changes (si} into (s:) 
corresponds to a flow from Rls,) to R{,;). The transition probabil- 
ity WIs;xs,j for this reaction equals the flux through the surface 
Sf,;HsjI separating R{,;) from Q, divided by the probability to 
find the system in Rts3. 
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tion-state theory [8,9]. However, one should 
keep in mind that this is a rigorous expression 
for the master equation, but not for macroscopic 
rate equations. In principle, this equation can be 
used in ab-initio calculations of the transition 
probabilities. 

Macroscopic rate equations can be derived 
from the master equations. I would like to give 
two examples to illustrate the method, and to 
show what approximations may have to be used. 
Suppose there is only one type of adsorbate, say 
A, which desorbs. The coverage 0, is defined 
as an ensemble average 

where S is the number of sites, and (A) s,) 
number of A’s in configuration {sj] J 

is the 
i:e.; the 

number of sj equal to A). This leads to 

dt& 1 d %J 
c- dt =sfs,) dt !A)(,,, 

(4) 
Desorption reduces the number of A’s by one, 
so that W,,ixs:) # 0 only if all si are the same as 
the si except for the site with a desorbing A. 
Therefore for each { si} the number of non- 
vanishing terms in the summation over {si) 
equals (A>rS3, and for each of these terms we 

, = Wdi', (no lateral interactions), and 
~~~zl~?!!\l+ - 1. This explains the third step 
of the derivation. Note that the expression above 
is exact. 

Suppose now that the desorption is associa- 
tive for neighboring adsorbates (2A(ads) -+ 
A,(gas)). The first two steps of Eq. (4) still 
hold. Now (Ajrs,, = (A),,:,, - 2 must hold, and 
the number of new configurations that can result 
from desorption of a pair of A’s equals the 

number of neighboring pairs in the current con- 
figuration; i.e., 

dOA 
-= 

dt 
- 3 wd,) c P&4A)(.+ 

(s:} 
(5) 

where (AA),,:, is the number of pairs of neigh- 
boring A’s in configuration {s:}. This is still an 
exact expression, but to reduce it to the familiar 
expression in terms of 0, two approximations 
have to be made. First, the A’s are assumed to 
be randomly distributed. This means 

(6) 

where Z is the coordination number. Second, 
the fluctuations in the coverage are assumed to 
be negligible; i.e., 

The second approximation becomes exact in the 
thermodynamic limit [ 131, but the first one need 
not be a good approximation at all. In that case 
there does not seem to be a justification to use 
macroscopic rate equations. A situation where 
the first approximation seems to be a good one 
is when there is fast diffusion (however, see 
Ref. [17]). Note also the appearance of the 
coordination number in the rate equation. 

Although the master equation can formally 
be solved, this is in general not practical, be- 
cause of the extremely large number of possible 
configurations of the adlayer. Instead one uses a 
Monte Carlo procedure. There are a number of 
Monte Carlo methods to simulate the evolution 
of an adlayer [2,18-211. The following seems to 
be the most efficient one for the systems I will 
discuss below. The adlayer evolves through a 
series of reactions, and time is incremented after 
each reaction. The method to determine the 
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reaction and the corresponding time increment 
consists of three steps. Let’s assume that at time 
t the adlayer is in configuration {si}. Then first 
determine the time t + At at which the next 
reaction will take place. This time is given by 

(9 

where r is a uniform deviate 0 < r I 1. The 
denominator is the total rate of change for con- 
figuration { si). Next determine the type of reac- 
tion k (desorption, adsorption, dissociation, etc.) 
that will take place. This is given by 

C;:;N,W, 

Cf$yN,W, < r’ ’ 

C:= ,N,W, 

CfiyNIW, ’ (10) 

with r’ another uniform deviate 0 < r’ I 1, NI 
the number of possible reactions of type 1, W, 
the corresponding transition probability, and 
N_ the number of reaction types. Finally, de- 
termine where that reaction takes place. This 
can be done by randomly picking sites until one 
has been found where the reaction is possible. 
The computer time per reaction for this method 
does not depend on the system size. It can be 
shown that it generates configurations with the 
correct probabilities. For the Lotka model (see 
below) the last step can be done even more 
efficiently by making lists of the vacant sites 
and of the sites with a B adsorbate. Adsorption 
of A and desorption of B can then be done by 
simply picking a random element of one of 
these lists. 

3. Results and discussions 

The two models that I will discuss in this 
section both show oscillations. Mathematically 
oscillations result from the existence of a limit 
cycle in some phase space of the system [22,23]. 
(The term phase space is used here as the space 
spanned by some properties, like coverages, that 
characterize the system.) However, there may 
be various chemical mechanisms leading to a 
limit cycle, as will be illustrated below. 

A large number of Monte Carlo studies have 
been published using the Ziff-Gulari-Barshad 
model (ZGB-model) of CO oxidation [21]. This 
model contains just three reactions. 

CO(gas) + * + CO(ads), (11) 
O,(gas) + 2* --) 2O(ads), (12) 
CO(ads) + O(ads) -+ CO,(gas) + 2*. (13) 

Here * means a vacant sites, and the sites in the 
last two reactions are nearest neighbors. The 
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Fig. 2. Temporal variations of 19~~ and 0, in CO oxidation with 
site blocking (a), and of 0, and 0a in the Lotka model (b). The 
former has been obtained from a simulation on a 256 X 256 square 
grid with transition probabilities 1 for CO adsorption, 0.52 for 0, 
adsorption, 0.001 for CO desorption, 0.0003 for X adsorption and 
desorption, and infinitely fast CO, formation. The latter has been 
obtained from a simulation on a 2048 X2048 square grid with 
transition probabilities 0.05 for A adsorption, 0.95 for B desorp- 
tion, and infinitely fast autocatalytic step. 
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Fig. 3. Trajectories in the (Oco, Oo)-plane for CO oxidation with 
site blocking (a), and in the (0,, tIa)-plane for the Lotka model 
(b) representing one typical period of the oscillations in each case. 
The same simulations have been used as for Fig. 2. The dots in (a) 
are 30 time units apart, and in (b) 0.1 time units. The systems 
move anti-clockwise. 

formation of CO, is assumed to be infinitely 
fast. 

The ZGB-model does not show oscillations, 
but it does show kinetic phase transitions; a 
second-order one from a reactive (i.e., CO,-pro- 
ducing) state to a state where the surface is 
completely covered by oxygen (O-poisoning), 
and a first-order one from the reactive state to a 
state where the surface is completely covered by 
CO (CO-poisoning). As has been observed first 
by Eigenberger, one can obtain oscillations by 

(a) 

(W 

Fig. 4. Snapshots of the adlayer at different moments during one 
cycle of the oscillations of CO oxidation with site blocking 
obtained from a simulation with a 64 X 64 square grid. The CO 
molecules are depicted by crosses, open circles are oxygen atoms, 
and closed circles depict the site blocking adsorbate. The transi- 
tion from the CO-poisoned to the reactive state is shown in (a), 
and the reactive state is shown in (b). Transition probabilities are 
as for Fig. 2. 
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introducing a site blocking mechanism [24,25]. 
For the ZGB-model this can be done by adding 

CO(ads) + CO(gas) + * , (14) 

X(gas) + * + X(ads) , (15) 

X(ads) + X(gas) + * . (16) 
CO desorption is necessary to avoid trapping 
the system in the CO-poisoned state. The last 
two reactions are slow, and the only function of 
X is to block sites. Models have been proposed 
to explain oscillations in CO oxidation where X 
is unreactive CO, subsurface oxygen, or carbon 
formed from CO dissociation [23], but X can be 
another chemical species altogether. This seems 
to provide a possibility to obtain controllable 
oscillations. 

The Lotka model consists of just three reac- 
tions [26,27]. 

A(gas) + * + A( ads), (17) 

B(ads) + B(gas) + * , (18) 

A(ads) + B(ads) + 2B(ads). (19) 
In the autocatalytic step A and B have to be 
nearest neighbors. It is infinitely fast. The re- 
markable thing about this model is that it shows 
oscillations at all. If one assumes that the behav- 
ior of the system is determined by the coverages 
0, and 8,, then there is a theorem that states 
that oscillations do not occur in two-variable 
systems with only uni- and bimolecular reac- 
tions [28]. This means that the system is not 
only determined by the coverages, but one also 
needs correlation. 

Fig. 2 shows how the coverages change in 
time for the two models. The unit of time for 
CO oxidation is chosen so that the transition 
probability for CO adsorption is 1. For the 
Lotka model the unit of time is such that the 
sum of the transition probabilities for A adsorp- 

tion and B desorption is 1. We see that the 
oscillations in the Lotka model are very regular, 
whereas there is some variation in the amplitude 
and period of the oscillations in the CO oxida- 
tion. The reason for the latter is a finite-size 
effect. The oscillations in the CO oxidation are 
triggered by a fluctuation in the vacancies in the 
CO layer when the system is CO poisoned (see 
below). These fluctuations are less regular for 
smaller system sizes. Unfortunately, large sys- 
tems, and therefore more regular oscillations, 
are computationally very costly. 

Fig. 3 shows the trajectories of the two sys- 
tems in the ( dco, 0,)- and the (0,, 8,)-plane, 
respectively. This figure hints at the mechanism 
in the CO oxidation that causes the oscillations. 
The part where the system changes very slowly 
(bottom-right) corresponds to the CO-poisoned 
state. There are very few vacancies in the CO 
layer, but there is quite a number of X. Conse- 
quently, X will desorb slowly, and is replaced 
by CO. Also at the top-left part of the trajectory 
the system moves slowly. This corresponds to 
the reactive state. In this state there are many 
more vacancies than there are X’s. Therefore 
there is net X adsorption. The CO-poisoned and 
the reactive state are both stable when the X 
coverage is fixed between 8, = 0.05 and 0.10. 
With X adsorption and desorption these states 
evolve and become unstable, and there are tran- 
sitions from one to the other. The system moves 
faster in the ( eco, 8,)-plane during these transi- 
tions. 

The more important transition is the one from 
the CO-poisoned to the reactive state. Below 
8, = 0.05 the CO-poisoned state becomes un- 
stable. When a fluctuation occurs that creates a 
small hole in the CO layer where oxygen can 
adsorb, the formation of CO, rapidly enlarges 
that hole, thus facilitating more oxygen adsorp- 

Fig. 5. Snapshots of the adlayer in the Lotka model just before (a) and after (b) an avalanche of autocatalytic reactions. The A’s are depicted 
by crosses, and the B’s by squares. The avalanche is triggered by adsorption of one A at the position marked by a diamond in (a). The 
snapshots are obtained from a simulation with a 128 X 128 square grid. (Only part of the whole grid is shown.) Transition probabilities are 
0.11 for A adsorption and 0.89 for B desorption. The autocatalytic reaction is infinitely fast. 
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tion, etc. Fig. 4a shows the adlayer during this 
transition. A reactive front sweeps over the 
whole surface. This forms the synchronization 
mechanism that fixes the phase of the oscilla- 
tions for the whole adlayer. 

Fig. 4b shows the adlayer in the reactive 
state. It nicely shows one function of the site 
blocking adsorbate. Without that adsorbate CO 
will not be able to form islands. However, at the 
lower part of Fig. 4b a CO island can be seen. It 
has many X’s at the edge. These protect the 
island from being annihilated by oxygen. 

The mechanism of the oscillations in the 
Lotka model is caused by large avalanches of 
the autocatalytic reaction. The system evolves 
towards A poisoning, as can be seen in the 
bottom-right part of Fig. 3b, but that state is 
never reached. Fig. 5 shows what typically hap- 
pens. In Fig. 5a a few B’s are left. Next an A 
adsorbs at the site marked by the diamond on 
the right, just below the middle. This A adsorbs 
next to a B and immediately is turned into a B. 
The same happens with the A’s connected to 
this new B. The result is shown in Fig. 5b. 

The behavior of the Lotka model is character- 
ized by the transition probability l for the A 
adsorption. The unit of time is chosen so that 
the transition probability for B desorption is 
1 - 6. It can be shown that for the average 
coverages 

s,+;S,=1 (20) 

holds. (The bar stands for time averaging.) The 
simulations shows that 0, < 1 for all f, so that 
s, a 5 for 5 + 0. As a consequence the aver- 
age size of the autocatalytic reaction avalanches 
is proportional to l/f for 5 + 0 1271. If this 
size is finite we have only local oscillations, but 
it diverges when 5 decreases, and the oscilla- 
tions become global. There is a recovery period 
after a large avalanche, in which no other large 
avalanches can occur, because few A’s are left 
on the surface. During this recovery period there 
is a slow build-up of 0, and a more rapid 

decrease of en due to A adsorption and B 
desorption. 

The macroscopic rate equations for both 
models can be derived using the method of 
Section 2. For CO oxidation with site blocking 
one finds 

d%O 
- = 8, - 0.001 e,, - 4w,, oco 8,) 

dt (21) 

z = (4.0.52)8,2-4w,,,eco8,, (22) 

d& 
- = 0.00038, 

dt 
- 0.00038,) (23) 

where W,, is the transition probability for the 
formation of CO,. (The other transition proba- 
bilities are as in Fig. 2.) For the Lotka model 
one finds 

de% 
dt = lee - 4KeAe,, 

% - = -(I - ()e, + 4Ke,e,, 
dt 

(24) 

(25) 
where K is the transition probability for the 
autocatalytic reaction. Because of W,, + ~0 the 
CO oxidation becomes trapped in the CO-poi- 
soned state. Because of K + DC) the only stable 
state of the Lotka model has 0, = 0 and 0n = 5. 
The origin of these erroneous results is the 
implicit assumption of these rate equations that 
the adsorbates are randomly distributed. This 
and the infinitely fast step causes the coverage 
of one adsorbate to converge to zero. The 
macroscopic rate equations cannot account for 
the formation of well-separated islands, which 
allows for non-zero coverages for all adsor- 
bates. The islands here are formed by segrega- 
tion due to high reaction rates, and not to lateral 
interactions. For the CO oxidation it is possible 
to obtain oscillations with Eqs. (21)-(23), but 
only at the expense of changing the coefficients 
on the right-hand-sides. The consequence of this 
is that one cannot interpret these coefficients as 
reaction rates any longer. For the Lotka model 
even changing these coefficients produces no 
oscillations. 
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4. Conclusions 

In this paper I have shown how the kinetics 
of reactions on surfaces can be modelled using a 
master equation that describes the evolution of a 
catalyst’s surface and the adlayer. I have shown 
how to derive the equation from first principles, 
and how it relates to macroscopic rate equa- 
tions. A Monte Carlo method to obtain numeri- 
cal results has been described. 

The method was used to study the oscilla- 
tions in two model systems; CO oxidation with 
site blocking and the Lotka model. In the CO 
oxidation the oscillations are caused by a bista- 
bility in the CO, production for a range of 
coverages of the site blocking adsorbate. Slow 
adsorption and desorption of that adsorbate drive 
the system from one state to the other and back. 
The transition from the CO-poisoned state to the 
CO,-producing state occurs explosively. A reac- 
tion front, moving rapidly over the whole sur- 
face during this transition, forms the synchro- 
nization mechanism. In the Lotka model the 
oscillations are caused by large avalanches of 
the autocatalytic reaction. If the ratio between A 
adsorption and B desorption goes to zero, the 
average size of the avalanches diverges, so that 
the oscillations become global. Neither model 
system can be described by macroscopic rate 
equations. 

Finally, I would like to relate this work to 
studies on seemingly unrelated systems. Reac- 
tions on catalysts form just one example of 
phenomena that can be studied with Monte 
Carlo simulations of lattice-gas models. Other 
examples are sand piles, forest fires, and earth- 
quakes [29], which form an active field of re- 
search in statistical physics. All these systems 
are formally equivalent, and I would expect that 
concepts that are useful to one system are also 
useful to others. In particular, the concepts of 
self-organized criticality (power-law behavior of 
correlations and corresponding diverging corre- 
lation lengths and times) and universality class 
(a limited number of sets of critical exponents; 
i.e., a limited number of ways for systems to 

behave) might play an important role in the 
kinetics of catalytic processes. 
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